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OUTLINE

• Background and motivation: urban greenhouse gas  (GHG) monitoring
• NIST urban testbeds

• Dispersion model inter-comparison (Texas 2013)

• Northeast Corridor: Washington DC / Baltimore 
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WHY CITIES?

• Urban populations contribute the 
most (70%) to anthropogenic 
GHG emissions.

• 49% of the 300 most populated 
cities in CONUS have emission 
reduction targets.

• There is a demand for actionable 
information to inform policies.
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INFORMING INVENTORY METHODS

• Countries (Paris Agreement NDC’s), States, Municipalities, Cities are 
interested in reducing GHG emissions and increasing sustainability.

• Private companies also have a stake in reducing emissions (e.g. methane from 
livestock, natural gas distribution, landfill capture, etc.).

• Emissions are determined using accounting methods (inventories).

• Inventories can be informed by atmospheric analysis – valuable feedback loop.

• But only if we understand uncertainties in our estimates!
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CO2CH4

Bottom-up (e.g. Inventories)

Top-Down (e.g. Atmospheric Inversions)

COMPLEMENTARY METHODS 
FOR EMISSIONS (FLUX) ESTIMATION
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Atmospheric 
observations 
contain integrated 
emission signal 
from a city 

Accounting 
methods use all 
available 
information on 
activities that 
produce GHG 
emissions  
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Bottom-up (e.g. Inventories)

BOTTOM-UP METHODS (INVENTORIES)
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(e.g. # of building, 
fuel sales, etc.)

(parameter that converts 
to emissions)

GHG Emissions = Activity Data x Emission Factors

Accounting 
methods use all 
available 
information on 
activities that 
produce GHG 
emissions  
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TOP DOWN
EX. ATMOSPHERIC INVERSIONS OR MASS 

BALANCE METHODS

GHG

Top-Down

[GHG]

Atmospheric 
Inversions

Mass Balance Require some understanding 
of atmospheric 

transport/dispersion 
modeling

• Use relatively 
dense GHG 
observation 
networks.

• Wind transports 
signal from 
emissions 
sources to the 
measurement 
location.

• Quantification of 
the transport is 
needed to 
interpret GHG 
concentrations 
and link to fluxes 
into and out of 
the surface.
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CO2CH4

Bottom-up (e.g. Inventories)

Top-Down (e.g. Atmospheric Inversions)

COMPLEMENTARY METHODS 
AT URBAN SCALES
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NIST goal: 
To improve 
measurements (both 
top-down and bottom-
up) and assess their 
uncertainties through 
comparison of different 
methods. 
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TOP DOWN
ATMOSPHERIC INVERSIONS
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Initial assumed fluxes 
(e.g. Inventory)

Transport model

Simulated 
observations

Actual 
observations

Compare & 
Optimize

Adjusted (posterior) 
fluxes

ACES inventory (Gately et al., 2017)



FOOTPRINT CONCEPT
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• Dispersion model is run backwards in time from the observation point 
(”receptor”).

• Surface influence for observation is calculated (analogous to the surface 
concentration in a forward run)

• proportional to residence time of particle over a given pixel and within the PBL

• Surface influence (“footprint”) is convolved with flux (emissions) map:

• Each pixel’s influence value is multiplied by a surface flux (µmol/m2/s)

• Sum over all pixels equals the predicted concentration (ppm) at the receptor location

• Compare with observed value at that point

Footprint (surface sensitivity/influence)

Observation



FOOTPRINT CONCEPT
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• Dispersion model is run backwards in time from the observation point 
(”receptor”).

• Surface influence for observation is calculated (analogous to the surface 
concentration in a forward run)

• proportional to residence time of particle over a given pixel and within the PBL

• Surface influence (“footprint”) is convolved with flux (emissions) map:

• Each pixel’s influence value is multiplied by a surface flux (µmol/m2/s)
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Karion et al., in prep.
Contributors: I. Lopez-Coto, S. Gourdji, K. Mueller, J. Whetstone (NIST), T. Lauvaux
(PSU), A. Andrews, W. Angevine, C. Sweeney (NOAA/ESRL), A. Stein (NOAA/ARL) 

BARNETT SHALE, TEXAS, 2013
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CH4 Emissions Inventory Single Observation Footprint Contribution to observed CH4

Observation location

B ARNETT SHALE , TEXAS , 2013



FORWARD-BACKWARD CONSISTENCY
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Forward HYSPLIT model is equivalent 
to the backward/footprint-based model.  



MEAN METHANE ENHANCEMENT
(DOWNWIND TRANSECTS)
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OBS

Modeled enhancements = Footprint x inventory convolution.
Background subtracted from observations.
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MEAN METHANE ENHANCEMENT
(DOWNWIND TRANSECTS)
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Flight date (YYYYMMDD)

OBS

Modeled enhancements = Footprint x inventory convolution.
Background subtracted from observations.
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MEAN METHANE ENHANCEMENT
(DOWNWIND TRANSECTS)
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WRF-Chem

OBS

Off-line dispersion

Modeled enhancements = Footprint x inventory convolution.
Background subtracted from observations.

• Most models underestimate enhancements: 
inventory could be too low, or transport bias.

• Significant spread between models
• Even when driven by same meteorology (WRF 

– triangles)



BARNETT SHALE MODEL INTER-COMPARISON
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Karion et al, in prep.

Inventory emissions
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FORWARD MODEL COMPARISON: 
METHANE PROFILE 10/28/2013
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Flight duration

CH4 enhancement at a 
single location through 
the day (20131028) 
shows large differences 
between the two 
models at 6-12 UTC (0-
6 LST).  

PBL from WRF

PBL from WRF



WHAT DID WE LEARN?

1. We see evidence of systematic differences in vertical mixing between different 
tracer dispersion models, separate from differences in meteorological fields.

2. Meteorological errors at night or early morning can affect mole fractions later 
in the day due to improper modeling of vertical mixing combined with wind 
shear.

3. Multiple transport models should be investigated, especially if data set is 
limited in temporal coverage.
• Errors may average out if using a year’s worth of model data, but on any given day errors are 

large and not easily diagnosed.
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MIXING PARAMETRIZATIONS: FUTURE WORK

Each panel corresponds with 2, 3, 5, 6, 7, 8 respectively. The x and y axes are in meters. Colorscale is log10 ppm

4 experimental variants of a new 
mixing parametrization added to 
HYSPLIT in collaboration with 
NOAA-ARL. 

Example of test case: Brandon 
Shore Power Plant.



NORTHEAST CORRIDOR 
PROJECT:

MONITORING GHG EMISSIONS FROM 
WASHINGTON DC AND BALTIMORE
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PROJECT ELEMENTS
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High-accuracy 
CO2, CH4
measurements

Anthropogenic 
CO2 inventory



FLAGG-MD AIRBORNE CAMPAIGNS

• University of Maryland & Purdue 
University conducting flight campaigns in 
the region.

• Flights upwind / downwind of the 
DC/Baltimore region.

• Measurements of CO2, CH4, CO, O3, NO2, 
black carbon.

• Mass balance estimates of total emissions 
as well as large point sources (landfills, 
power plants) (Ahn, in prep; Ren, in prep)

• Measurements being used with transport 
model in atmospheric inversion. (Lopez 
Coto, in prep.)
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Flight data: R. Dickerson, X. Ren, H. He, et al.
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● Meteorological models
– HRRR (from NOAA-ARL repository)

– WRF v3.8 (4 members)

● 4 PBL schemes (MYNN, YSU, BOUL, QNSE)

● 1 Urban canopy model

● IC and BC from HRRR (2) and NARR (2)

● MP-Thompson, SW (and LW)-RRTMg, LSM-Noah, 
K-F cumulus scheme (only at 9km)

● 3 domains (9, 3, 1 km → dt < 60 s)

● 60 vertical levels (30 < 3 km)

● Dispersion model
– HYSPLIT (STILT mode)

– Receptors every 60 s (48 h back)

– 500 particles per receptor

– PBLH and TKE from meteorological model 
(Kanthar/Clayson when TKE was not available, YSU)

– 0.03
o

(lat x lon: 120 x 125)

METHODS: TRANSPORT MODELING
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METHODS: CO2 EMISSIONS

● FFCO2: ACES inventory (Gately et al., 2017)

● 1 km resolution, hourly for 2013 and 2014

● Averaged February during flight time (~ 12-18 EST).

● BIOCO2: VPRM

● 10 vegetation categories

● 250 m resolution, 3 hourly for February 2016

Anthropogenic Emissions Biospheric Emissions (Small in February 2016)
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RF1: 02/08/2016

HRRR OBSYSU HRRR

YSUMYNN MYNN

MEANBOUL

QNSE

QNSE BOUL

Mean Sensitivity (Footprint) Sensitivity with altitude
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MYNN and QNSE show weakest sensitivity (for this flight)

HRRR OBSYSU HRRR

YSUMYNN MYNN

MEANBOUL

QNSE

QNSE BOUL

Mean Sensitivity (Footprint) Sensitivity with altitude

R F1 : 0 2 / 0 8 / 2016
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RF1 : 02/08/2016

●CO2 nearly unbiased
●Better correlation for models 
driven by NARR (for this flight)

Time Series
(OBS + models)

HRRR

YSU+NARR MYNN+NARR
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TOWER NETWORK

• Partnership with Earth Networks

• High-accuracy measurements based on CRDS analyzers

• CO2 / CH4 reported on WMO scales

• Communications towers 50m+

• Inlets at 2 heights

• 12 in urban areas

• 4 near Baltimore

• 8 near Washington DC

• 4 outside urban area (red) 

• Locations identified using network design studies

• Flasks for 14CO2 & other gases at 4 sites (1 BG, 3 urban)

• Began in Fall 2015

• 10 of 16 sites operational currently
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/UVA

• Lopez-Coto et al, Advances in 
Atmospheric Sciences, 2017

• Mueller et al., JGR-A, 2018



~100 km

BUC

SFD

TMD

Baltimore MD

SNP

CURRENT NETWORK MAP

map by 
Google



33Movie: Israel Lopez Coto, NIST






February 2016, Afternoon hours only

Network as Designed
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NETWORK COVERAGE: 
MODEL-BASED REGION OF INFLUENCE FOR EACH LOCATION

Israel Lopez Coto, NIST



CO2
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Jan 2016 – Apr 2018



LAGRANGIAN DISPERSION / FOOTPRINT 
MODELING

36



CONCLUSION

• Understanding and modeling transport and dispersion error is 
key to understanding the uncertainty in top-down emissions 
estimates!
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NORTHEAST CORRIDOR – BALTIMORE/WASHINGTON
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THANK YOU

https://www.nist.gov/topics/greenhouse-gas-measurements

Anna.Karion@nist.gov
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